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Abstract: If )\ = (Al,...,AN) € Rn,‘B,Al,...,AN are bounded

linear operators from a Banach space X to a Banach space 2,
‘ N

ALAL
j=1 JE3
is defined. It is then shown that bifurcation always occurs at

the concept of a simple eigenvalue for the operator B - Z
simple eigenvalues and the results are applied to a second order
ordinary differential equation with boundary conditions at three

distinct points. 3

‘l. Introduction. Suppose X,Z are Banach spaces, R 1is the real

line, B: X > Z, A: X » Z are bounded linear operators, A € R.

An element Ao ER 1is said to be a simple eigenvalue of the pair !

of operators (B,A) if dim 9NB-A0A) = 1 = codim 5@(B-AOA),

0 € m(B-AOA), X, # 0 and N,# denote

respectively the null space and range of operators (see Crandall

Ax0 & H(B) where x

and Rabinowitz [3]). If A = I, the identity operator, and
X = 2, this is the usual definition of simple eigenvalue. Although
elementary, it is a fundamental result in bifurcation theory that

AO is always a bifurcation point for a smooth family of functions

M: Rx X=+12, M(A,0) =0, X ER




T

provided that A is a simple eigenvalue of the pair of operators

0
(B,A) where B,A are defined by

M(x,Agtu) = [B = (A j+u)Alx + o(luI2|x|+Ix|2)

as |ul, |x| > o.

In the applications, there are many cases where the function M
depends on several eigenvalue parameters. These additional paraheters
often have the effect of increasing the dimension of the null space
of the operator corresponding to the linear approximation and lead
to secondary_bifurcations (see, for example, Bauer, Keller, Reiss [2],
Keener [5], List [6]). There are, however, other applications where
the additional parameters are needed in order to obtain a feasible
eigenvalue problem. For example, for a second order ordinary differ-
ential equation with boundary conditions specified at three distinct ,-
points, one cannot expect to have a complete system of eigenvalues
if only one parameter is used (see, for example, Atkinson [l]). The
literature on such equations is extensive (see, for example, Kallstrom
and Sleeman [4] for references).

It is the purpose of this paper to begin a study of bifurcation
for problems of the latter type. More specifically, suppose
B,Al,...,AN are bounded linear operators taking X into 2. An
N-tuplé Ay = (Ag,‘..,Ag) of real numbers is said to be a simple

0

N
eigenvalue of the operators: (B,Al,...,AN) if LX) dgf B - X R o
=1JJ

J

satisfies

~e

(i) dim R(L(AG)) =1

(ii) L(Ao) is Fredholm of index 1 - N;
(iii) [Al N(L()‘o))'---,AN ‘R(L(Ao))] ® 9?(L(Ao)) = 2

il B —— e i
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where [ ] denotes the span. For the case N = 1, this
definition coincides with the previous definition.
We show below that a simple eigenvalue of (B,Al,...,AN) is

always a bifurcation point for a smooth family of functions

N

M: RN x X+ 32, M(),0 =0, A ER'

provided
= 2 2
M(A,x) = LAt x + o(|u|[x][+][x]%)

N
as |u|' le 2 OI B o= (Ulr---,uN) elR .
If v €ER 1is another parameter, p € Z is given, we

describe the bifurcation diagram for the functions
M(A,x) + vp

under some generic conditions on the function (XO,uyO) where
u €ER and [y,] = ML(,)). In particular, we obtain the familiar
cusp for several parameter families.
Finally, a specific example previously discussed by Thomas
and Zachmann [8] of a second order ordinary differential equation

with boundary conditions at three distinct points is considered.

2. Bifurcation theory. Suppose
N

M: R X X = 2
M(A,0) = 0, A €R"
M(A,x) = L(A)x + N(A,x)

N
B e A-An
L(A) = Zj=l LY

otja=ag|?Ix] + |x]%) as |A=2gl, Ix| > o,

N(A,x)
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where AO E(RN is fixed and M has continuous derivatives up

through order two.

Theorem 2.1. If A is a simple eigenvalue of

0

then AO is a bifurcation point for M(A,x).

there is a neighborhood V CIRN x X of (0,0)

solutions (A,x) € V of

M(A,x) =0

are given by s

X = ygu + z*(you,A*(u))

where A*(u) is a continuously differentiable function of
with A*(0) = Ag, [yy] = ML), 2¥: RLOAG)) x R > X

continuously differentiable function satisfying z*(y,Ao)

o(ly|®>) as |y| ~ o.

Proof: Let X X. ® X 2 =12, @ Zl’

0 ! % 0

tad
|

N
]

Q(L(Ao)).

Since Ao is assumed to be a simple eigenvalue of

we may choose

zO - [AIYO'...'ANYOJ.

(ByAysees,By)

such that the

N

SRSl

u

is

More specifically,

{2.1)

&€ R

a

(B,Al’.o. 'AN) ’

Al Sy b s T S LN SR
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Let U:X’*XO,I-U:X'*Xl,E:Z'*Zl,I-E:Z**ZO be pro-

jections defined by the above decomposition of X,Z.

oy

We may now apply the method of Liapunov-Schmidt to

Equation {2.1). If %=y +:2, ¥ € xo, z S Xl, then the equation 4

EM(y+z,)\0+p) =0

has a unique solution z*(y,u) € xl for y,n in a neighborhood

of (0,0) € Xo x RY and z*(y,O) = O(|y|2) as |y| - 0. This
solution has continuous derivatives. Thus, every solution of

Equation (2.1) near (0,0) must be obtained as
*
Xx =y + z (y,u)
where (y,u) satisfy the bifurcation equations

(I-E)M(y+z* (y, 1) ,Aytu) = 0. (2.2)

If y = uy,r u € R, then Equation (2.2) can be written in terms

of the basis vectors Ajy0 with components Fj(u,u) as

N

F.A.
Zj=1 3A5%0

(I-E)L(Aq+u) (uyg+z* (uyq, 1))

+ (I~E)N O\ g+u,uyy+z”* (uy g u))

N
w I Ayhgvg + otlul®lul + Jul®.

Since the vectors {Ajyo} are linearly independent, it follows that
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L : 2 2
Fj(uru) = Uju + O(’UI IUI + |Ul ),
(2.3)
j= llzrooo’No
Solving Equation (2.2) is equivalent to solving the equations
Fj(u,u) =0, j=1,2,...,N. Since each Fj vanishes for u = 0,

we may define Gj(u,u) = Fj(u,u)/u and knbw that all solutions

except u = 0 .are obtained from the equations

Gj(u,u) oty =g N

Since Gj(O,u) = uj, j=1,2,...,N, we may apply the implicit function
theorem to complete the proof.

Theorem 2.1 corresponds to the situation where x = 0 1is a
solution of Equation (2.1) for all ) € RN. What happens if there
are additional parameters in the problem and zero is not a solution

of the equation for ihe parameters not zero? For example, consider

the equation
M(X,x) + vp = 0 (2.4)

where M 1is the same function as before, v ER and p 1is a given
element of 2. Also, suppose Ao is a simple eigenvalue of
(B,Al,...,AN) and Yo is a basis for the null space of L(Ao).

By imposing some additional conditions on the nonlinear terms of

M(O,uyo) one can discuss completely the solutions of Equation (2.4)

near A =0, v =0, x 0. We do not consider the most general

situation but merely show how one can obtain the analogue of the

familiar cusp.




Using the same notation as before, we know that
i X
[Alyo,...,ANyO] is a complementary subspace of ,f(L(AO)).

With E the previous projection onto f%%L(AO)), let
AT G
where Qj is a projection onto Ajyo and Qij =0, j # k. Let

3
o
i Sl Al e

ose

2
3 ~
oy # 0, B1 # 0, o | QlM(O,uyo) = 0. (2 E5Y

au u=0

If the bifurcation functions Fj(u,v,u), j=1,2,...,N, are defined

as in the proof of Theorem 2.1, then

azp =1
ouou s
(0,0,0) (2.6)
F)(u,v,u) = alu3 + ugu + By + oCul b a2 ful+ul lul 2+ v 2+ ou |+ vu )
as u,v,u > 0.
If
Fj(O,v,O) = vfj(v), J o= 12500, R (2.7)

and

i s A i e
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Fy=Fpooiip =1y
ﬁj = (-£F +£,F)) /u (2.8)
ﬁj = ﬁj(u,v,O), T g,
then the bifurcation equations Fj(u,v,u) — o P ) [ R N [ L <
eguivalent to the equations
fj(ﬁ,v,u) =0 (2.9)

~

The functions Fj satisfy the properties

Ej(o,o,O) =0, j=2,3,.0.,N

a(ﬁz,...,ﬁN)

a(uzl"'luN) (0,0’0)

Therefore, the Implicit Function Theorem implies the equations

ﬁj S S BB e TR

have a unique solution ﬁ;(ul,v,u), j=2,3,...,N, in a neighbor-
hood of zero with ﬁ;(0,0,0) = 0. Therefore, the bifurcation

equations are equivalent to the single equation

El(ul,ig,...,ﬁ;,v,u) = 0. (2.10)

The latter equation in Hysveu has the form




:
i
,J

AT

3

alu + ulu + Blv + hio.t. = 0 {2 11) :

where h.o.t. denotes higher order terms which are
O(u4+ui|u|+|ul||u|2+|v|2+[vul|+|vu[) as y;,v,u > 0. The bifurca-
tion curve for Equation (2.11) in the paramecter space g,V is
obtained from the multiple solutions of (2.11); that is, Wysv are
obtained parametrically in terms of u as the solution of

Equation (2.11) and the equation

3o u2 + 4w, + h.o.t. = 0

where h.o.t. denotes o(|u|3+ui+|ulul+lvl). This implies

Ty = --30L1u2 + O(lu|3), v = 2alu3/8l + O(|u|4) as ‘jul = 0.  This

is the familiar cusp and is shown in Figure 1 for < 0, Bl > 0.

o

</

{
i
|
|
|
]
|
{
|
|
!
|
|
|
r

|
[
|
|
[
|
|

Figure 1
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There is one solution of Equation (2.4) to the left of the cusp

and three solutions to the right.

3. An application. Suppose a < B < y are real numbers, p > 0

is continuously differentiable on J[a,y]l, g,a,b are continuous on

[a,Y], Al'AZ are real parameters and define

]

- )yt g 3
Loy 2 S e S ) 4

LAy = Loy + Alay + Azby.

Also, suppose f(x,y,y') 1is continuous in x, continuously differ-
entiable in vy,y', £(x,0,0) = 0, 3£f(x,0,0)/3(y,y") = 0. For given

numbefs al’Bl'Yl € [0,7), consider the boundary value problem

M(A,y) agt LMy + £(-,y,y') =0 on (a,Y) {31}
y (o) cos oy - y' (a)sin a; = 0 (3.2)
y(B)cos B, - y'(B)sin g, = 0 (3.3)

= 0. (3.4)

y(y)cos y; - y'(y)sin vy, =

Under appropriate conditions on a,b, it has been shown by

Sleeman [7] that there exists an eigenvalue XO of.  L(X) with

dim %(L(Ao)) = 1. For example, if a is positive on (a,y) and

b has a positive maximum on (a,B) and a negative minimum on ((3,Y),

then there are an infinite set of such eigenvalues and these are

characterized by the eigenvector Yo having m zeros on (a,B) and

n zeros on (B,Y), all zeros being simple. In the following, we assume,
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that the functions a,b satisfy conditions which enzuire that the

eigenfunction Yo has simple zeros on [a,Y].

Let X = {y € Wz’z(a,y): y satisfies the boundary conditions

(3.2) 63,30, L3.41) and lek 2= B2t0, ).

B Y
Lemma 3.1. 5@(L(Xo)) — (elE e J fy0 = 0, J fyo = 0} where
a B

[yO] = W(L(Aon; that is, L(AO) is Fredholm of index -1.

Proof: If we write the original three point boundary value problem

on [o,Y] as two separate boundary value problems,

L(Agly = £ on (o,B) {3:5)

plus boundary conditions (3.2), (3.3)

L(Ao)y = £ on Byl (3.6)

plus boundary conditions (3.3), (3.4)

for £ €2, then it is well-known that these two problems have a

solution if and only if

B D)

£ € 4, f fyy = 0, f@fy0 = 0. (3.7)

o

Therefore, if f EE&?(L(AO)), it is necessary that £ satisfy
(3.7). To show that it is sufficient, suppose f satisfies (3.7)
and let Y1rY, be solutions of problems (3.6), (3.7) respectively

given by
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¥y T Sy * Ky

¥y = 62y0 + Kzf

where Klf' K2f are any given solutionsof Problems (3.6), (3.7)
respectively and 61,62 are arbitrary constants.

We must show there exist 61,62 such that the function vy
on (a,y) given by y = y, on (a,B), ¥y =y, on (B,Y) satis-
fies the three point boundary value problem on [u,Y]. We need
only show that vy,y' are continuous at B.

If By =0, then y,(B) = y,(B) = 0. Therefore, y(x) is
continuous at x = f. The function y'(x) is continuous at x =§

if and only if yi(B) = yé(B); that is,

Since yb(B) # 0, we may solve for 61 - 5,
If Bl # 0, then the conditions for y(x),y'(x) to be

continuous at x = B are equivalent to (we have used (3.3))

(64=0,)¥,(B) = (K,E)(8) - (K,f)(R)
R 2 1 (3.8)

(cos B1) (8,-6,)y,(B) = (cos B)) [(K,£) (B) - (K £)(B)].

If 8, = n/2, then y'(B) = 0. Since yo(x) has simple zeros, it
follows that y,(B) # 0 and we may solve for §, - 6, to make
equations (3.8) satisfied. If Bl # 0, /2, then both equations
are equivalent in (3.8). Also, yo(B) # 0 and we can solve for

61 — 62. This completes the proof of the lemma.
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Lemma 3.2. If
ay0 f by0
a o
det #0 (3.9)
oY Y
2 2
f ay, f by

then Ao is a simple eigenvalue of L(}).
Proof: From Lemma 3.1, it remains only to show that ayo,by0 are
linearly independent and do not belong to W(L(Ao)). However,

Relation (3.9) clearly implies all of these properties and the lemma

M i 1 i i e N

is proved.

e ——

i s b e

Lemma 3.2 and Theorem 2.1 imply there is a bifurcation at

A= AO for the original boundary value problem (3.1)-(3.4). This

result is the same as the one of Thomas and Zachmann [8].

TR
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